Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Biomembr ; 1866(4): 184308, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437942

RESUMEN

Macroautophagy (hereafter autophagy) is an intracellular degradative pathway in budding yeast cells. Certain lipid types play essential roles in autophagy; yet the precise mechanisms regulating lipid composition during autophagy remain unknown. Here, we explored the role of the Osh family proteins in the modulating lipid composition during autophagy in budding yeast. Our results showed that osh1-osh7∆ deletions lead to autophagic dysfunction, with impaired GFP-Atg8 processing and the absence of autophagosomes and autophagic bodies in the cytosol and vacuole, respectively. Freeze-fracture electron microscopy (EM) revealed elevated phosphatidylinositol 4-phosphate (PtdIns(4)P) levels in cytoplasmic and luminal leaflets of autophagic bodies and vacuolar membranes in all deletion mutants. Phosphatidylserine (PtdSer) levels were significantly decreased in the autophagic bodies and vacuolar membranes in osh4∆ and osh5∆ mutants, whereas no significant changes were observed in other osh deletion mutants. Furthermore, we identified defects in autophagic processes in the osh4∆ and osh5∆ mutants, including rare autophagosome formation in the osh5∆ mutant and accumulation of autophagic bodies in the vacuole in the osh4∆ mutant, even in the absence of the proteinase inhibitor PMSF. These findings suggest that Osh4p and Osh5p play crucial roles in the transport of PtdSer to autophagic bodies and autophagosome membranes, respectively. The precise control of lipid composition in the membranes of autophagosomes and autophagic bodies by Osh4p and Osh5p represents an important regulatory mechanism in autophagy.


Asunto(s)
Autofagia , Fosfatos de Fosfatidilinositol , Fosfatidilserinas , Saccharomyces cerevisiae , Autofagosomas , Autofagia/genética , Fosfatidilserinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Receptores de Esteroides , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-35640825

RESUMEN

Autophagy is regulated by phosphoinositides. We have previously shown that phosphatidylinositol 4-phosphate (PtdIns(4)P) is localized in the autophagosomal membrane. Additionally, in yeast cells, phosphatidylinositol 4-kinases Pik1p and Stt4p play important roles in the formation of the autophagosome and its fusion with the vacuole, respectively. In this study, we analyzed the primary role of PtdIns(4)P phosphatases in yeast autophagy. The PtdIns(4)P labeling densities in the membranes of the vacuoles, mitochondria, nucleus, endoplasmic reticulum, and plasma membrane dramatically increased in the phosphatase deletion mutants sac1∆ and sjl3∆, and the temperature-sensitive mutant sac1ts/sjl3∆ at the restrictive temperature. GFP-Atg8 processing assay indicated defective autophagy in the sac1∆ and sac1ts/sjl3∆ mutants. In contrast to the localization of PtdIns(4)P in the luminal leaflet of autophagosomal membranes in the wild-type yeast, PtdIns(4)P was localized in both the luminal and cytoplasmic leaflets of the autophagosomal membranes in the sac1∆ strain. In addition, the number of autophagic bodies in the vacuole significantly decreased in the sac1∆ strain, although autophagosomes were present in the cytoplasm. In the sac1ts/sjl3∆ strain, the number of autophagosomes in the cytoplasm dramatically decreased at the restrictive temperature. Considering that the numbers of autophagosomes and autophagic bodies in the sjl3∆ strain were comparable to those in the wild-type yeast, we found that the autophagosome could not be formed when PtdIns(4)P phosphatase activities of both Sac1p and Sjl3p were diminished. Together, these results indicate that the turnover of PtdIns(4)P by phosphatases is essential for autophagosome biogenesis.


Asunto(s)
Monoéster Fosfórico Hidrolasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Retículo Endoplásmico/metabolismo , Fosfatidilinositoles/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...